当前位置:首页 > 最新资讯 > 行业资讯

2022年智能运维(AIOps)的发展趋势

AIOps(Artificial Intelligence for IT Operations),即智能运维,是将AI的能力与运维相结合,通过机器学习的方法来提升运维效率。

在传统的自动化运维体系中,重复性运维工作的人力成本和效率问题得到了有效解决。但在复杂场景下的故障处理、变更管理、容量管理、服务资源过程中,仍需要人来掌控决策的过程,这阻碍了运维效率的进一步提升。而AI方法的引入,使得机器能够代替人来做出决策,从而让实现完全自动化真正意义上成为可能。

而今的企业可以将DevOps工具整合到他们的AIOps战略中,从而实现更快的数据收集、真正的可观察性和深度数据分析。

DevOps(Development和Operations的组合词)是一种重视“软件开发人员(Dev)”和“IT运维技术人员(Ops)”之间沟通合作的文化、运动或惯例。透过自动化“软件交付”和“架构变更”的流程,来使得构建、测试、发布软件能够更加地快捷、频繁和可靠。

为什么AIOps如此流行?很简单。让顾客生活更轻松的技术,对企业来说可能是一场噩梦。这就是机器真正发挥作用的地方。AI工具可以帮助企业全天候监控他们的应用,降低风险,分析性能,甚至帮助人类团队思考客户服务机器人。

AIOps使这一切成为可能,以下是我们最喜欢的2022年AIOPs趋势:

这伴随着网络安全的普遍扩展。事件响应(Incident response)是AI的深度学习能力可以让人类从繁琐的手工任务中解脱出来的领域。不管多么优秀的网络安全团队,都不可能同时出现在任何地方。AI可以学会及早识别违规行为和潜在威胁,在事件扩散并造成进一步损害之前,启动一系列行动,譬如关闭服务器或关闭对存储系统的访问。

提高可观察性以减少平均修复时间 (MTTR)

借助第一种趋势,对系统的一般可观察性可以为事件提供上下文,并使企业能够转向积极的维护方法。 AI 的无所不包的监视,即使是最复杂的系统,不是不断地到处救火,而是帮助企业减少响应和修复事件所需的时间。统一的云监控系统使这成为现实。

可观察性不同于监视。使用监视,标志表明已经发生了一些事情,但没有提供下一步要做什么或怎样做的步骤。另一方面,可观察性减少了系统中的盲点;AI可以从每次事件中学习,这使得它在检测和修复未来事件时更加高效。

自动化程度的提高

随着愈来愈多的企业开始采用远程工作、加强网络安全、追求客户全方位服务,智能算法可以自动实现所有这些工作。这种自动化可以进行模式检测,更好地预测潜在的威胁,并为事件提供情景信息,无需人工团队的人工干预。

这使得IT能够处理更高层次的任务,同时将系统交给有能力的AI。而今,算法可以在不牺牲速度的情况下处理大量数据类型,该领域的创新将增加能够并愿意利用AIOps的企业数量。

AIOps和DevOps将合并

得益于5G的部署,智能互联环境的基础已经形成。企业可以将DevOps工具整合到他们的AIOps战略中,从而实现更快的数据收集、真正的可观察性和深度数据分析。甚至上面提到的自动化过程也将以AI开始和结束。

这是好消息。过时的技术工具可能会让一家企业陷入困境,但现在所有的元素都可以让AIOps发挥作用。企业可以在不牺牲安全或治理的情况下合并和简化操作,重新专注于他们所创造的价值。

未来属于AIOps

人类无法跟上技术进步的步伐,但AI的智能应用可以让企业处理大数据、新的网络安全需求,并简化不断增长的架构。它将从混乱中创造秩序,并使新一代互联高效的操作成为可能。

猜你喜欢